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Abstract. At UCLA's Plasma Physics Group, to achieve accessible 
computational power for our research goals, we developed the tools to build 
numerically-intensive parallel computing clusters on the Macintosh platform. 
Our approach is designed to allow the user, without expertise in the operating 
system, to most efficiently develop and run parallel code, enabling the most 
effective advancement of scientific research. In this article we describe, in 
technical detail, the design decisions we made to accomplish these goals.  We 
found it necessary for us to “reinvent” the cluster computer, creating a unique 
solution that maximizes accessibility for users.  See: http://daugerresearch.com/ 

1   Introduction 

Accessible computing power is becoming the main motivation for cluster computing. 
Beowulf [1], however, has taught us that the solution must be productive and cost-
effective by requiring only a minimum of time and expertise to build and operate the 
parallel computer. Specifically, our goal is to minimize the time needed to assemble 
and run a working cluster.  The simplicity and straightforwardness of this solution is 
just as important as its processing power because power provides nothing if it cannot 
be used effectively. This solution would provide a better total price to performance 
ratio and a higher commitment to the original purpose of such systems: provide the 
user with large amounts of accessible computing power.  

Since 1998, we at UCLA’s Plasma Physics Group have been developing and using 
a solution to meet those design criteria.  Our solution is based on the Macintosh 
Operating System using PowerPC-based Macintosh (Power Mac) hardware; we call it 
a Mac cluster. [2]  We use the Message-Passing Interface (MPI) [3], a dominant 
industry standard [4].  In our ongoing effort to improve the user experience, we 
continue to streamline the software and add numerous new features. With OS X, the 
latest, Unix-based version of the Mac OS, [5] we are seeing the convergence of the 
best of Unix with the best of the Mac.  

We have extended the Macintosh’s famed ease-of-use to parallel computing.  In the 
following, we describe how a user can build an Mac cluster and demonstrate how that 
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user can operate it.   We then describe technical details regarding  important design 
choices we made to accomplish these design goals and the consequences of those 
choices, emphasizing how our solution is different from other cluster types.  Part of 
our effort has been to rethink and streamline cluster design, installation, and 
operation.  We believe these design principles have led us to a cluster solution that 
maximizes the user’s accessibility to computational power.   

2   The User’s Experience Operating the Cluster 

2.1   Building a Mac Cluster 

Streamlining cluster setup to the bare minimum, the steps to building a Mac cluster 
have been distilled to connecting the computers to the network, assigning network 
names and addresses to the nodes, and quickly installing the software.  The following 
paragraphs completely define the components and procedures for setting up a Mac 
cluster: 

Collect the Hardware. Power Mac G4s or G5s, one Category 5 Ethernet cable with 
RJ-45 jacks per Mac, and an Ethernet switch. For each Mac, plug one end of a cable 
into the Ethernet jack on the Mac and the other end to a port on the switch.   

Configure the Machines. Making sure each Mac has an working Internet or IP 
connection and a unique name, specified in the Network and Sharing System 
Preferences.  

Install Software. To operate the cluster, a version of the Pooch software package is 
downloadable. [6] Running the installer on a hard drive of each Mac completes the 
parallel computer.  Software installation on a node takes only a few seconds, a brevity 
found in no other cluster type.   

2.2   Running a Mac Cluster 

Because the intention is that the cluster user will spend most time interacting with the 
cluster performing such job launching activities, we have invested considerable effort 
refining the design of this user interface to minimize the time for the user to run a 
parallel job.   

In our documentation, we recommend that users first test their Mac cluster with a 
simple, reliable parallel computing application such as AltiVec Fractal Carbon, 
available for free download. [6]  This initial test also trains the user to accomplish the 
basic tasks required to run a parallel job. We have distilled primary cluster operation 
into three fundamental steps: 

1. Selecting an Executable. After the user selectes New Job… from the File menu of 
Pooch, the user may drag the AltiVec Fractal Carbon demo from the Finder to this 
Job Window, depicted in Figure 1. 
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Fig. 1. To set up a parallel computing job, the user drags a parallel application, here the Fractal 
program, and drops it in the Job Window of Pooch  

2. Selecting Computational Resources. Next, the user chooses nodes to run in 
parallel by clicking on Select Nodes…, which invokes a Network Scan Window, 
shown in Figure 2. Double-clicking on a node moves it to the node list of the Job 
Window. 

 

Fig. 2. Selecting nodes is performed using the Network Scan Window, invoked by clicking on 
“Select Nodes…” from the Job window 

3. Combining These Selections Through Job Initiation. Finally, the user starts the 
parallel job by clicking on Launch Job.  

Pooch should now be distributing copies of the parallel application to the other 
nodes and initiating them in parallel. Upon completion of its computational task, the 
demo then calculates its achieved performance, which should be significantly greater 
than single-node performance.  

We consider the streamlining of this user interface to be important because 
submitting jobs is a repetitive task that potentially can occupy much of the user’s time 
because of the intended high frequency of this task.  We chose to use a graphical user 
interface (GUI) because a GUI tolerates the type of error and imprecision that users  
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can accidentally introduce when operating any device.  This use of a GUI is meant to 
contribute to the efficiency with which the user can operate the cluster. 

2.3   Debugging on a Mac Cluster 

So that the Plasma group’s physics researchers can maximize their time studying 
physics, we added enhancements, beyond basic message-passing, to the MPI 
implementation we call MacMPI that make it easier for them to develop parallel 
programs.   

One of these is the monitoring of MPI messages, controlled by a monitor flag in 
MacMPI, which can log every message sent or received. In its default setting, a small 
monitor window appears, shown in Figure 3. 

 

Fig. 3. The monitor window of MacMPI, which keeps track of statistics about the execution of 
the running parallel application  

In this window, status lights indicate whether the node whose screen is being 
examined is sending and/or receiving messages from any other node. Green indicates 
sending, red indicates receiving, and yellow means both.  Since messages normally 
are sent very fast, these lights blink rapidly. However, the moment a problem occurs, 
a particular color pattern is immediately visible to the user, who can then apply the 
new information to debugging the code.  

The monitor window also shows a similarly color-coded histogram of the size of 
messages being sent or received. The purpose of this histogram is to draw the user’s 
attention to the length of the messages the code is sending.  The two dials in 
MacMPI’s monitor window show the approximate percent of time spent in 
communication  and the average and instantaneous speeds achieved during 
communication. While approximate, those indicators have been invaluable in 
revealing problems in the code and the network.  
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3   Design Implementation  

In the design of the Mac cluster, we made the responsibilities of the communications 
library distinct and separate from the code that launches the jobs and manages the 
cluster, a separation that has existed since the Mac cluster’s inception in 1998.  We 
call the former MacMPI, while the current incarnation of the latter is called Pooch. 

3.1   MacMPI 

MacMPI, freely available from the AppleSeed site at UCLA Physics, is Decyk’s 45 
routine subset of MPI implemented using the Mac OS networking APIs. It exists in 
two forms: the first, MacMPI_X, uses Apple’s latest Open Transport implementation 
of TCP/IP available in both OS 9 and OS X while the second, MacMPI_S, uses the 
Unix sockets implementation in OS X. [8] We achieve excellent network performance 
comparable to other implementations.    

MacMPI is a source code library that users integrate into their executable.  
MacMPI is a wrapper library that assumes only the fundamental, preinstalled 
operating system is present and no more.  MacMPI takes advantage of as much of the 
operating system as possible to minimize its size and complexity.  We have utilized 
this library on hardware normally not designated for cluster operation and configured 
in virtually every possible configuration.   

3.2   Pooch Application 

Pooch is a parallel computing and cluster management tool designed to provide users 
accessibility to parallel computing. As of this writing, the latest version was released 
in September 2004. Pooch can organize the job’s files into subdirectories on the other 
nodes and retrieve files on those nodes containing output from completed jobs. It can 
queue jobs and launch them only when certain conditions have been met. It also has 
the ability to kill running jobs, launching jobs, and queued jobs. It keeps track of these 
jobs and reports their status in an appealing GUI.  It can also take advantage of 
machines where no user is logged in.   

Pooch supports the widest variety of parallel programming environments, enabled 
by the convergence of technologies in OS X: Carbon, Cocoa, Mach-O, Unix shell 
scripts, and AppleScripts. [5] As of this writing, Pooch supports five different 
Message-Passing Interfaces (MPIs): MacMPI, mpich, MPI/Pro, mpich-gm (for 
Myrinet hardware), and LAM/MPI. [6] Because of OS X, MPIs of such varied 
histories are all now supported in the one environment.   

3.3   Distinctions from Other Implementations 

Division of API and Launching Utility.  A fundamental difference from most other 
cluster types is the clear distinction and separation between the code that performs the 
internode communications for the job and the code that performs job initiation and other 
cluster management.  In most MPI implementations, such as mpich and LAM, these 
tasks are merged in one package.  Only recently has work begun on versions that identify 
distinctions between these tasks, such as the emerging MPICH2 rewrite of mpich. [7]  
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No Modification to the Operating System. Making no modifications to the 
operating system allowed us to simplify much of our software design.  In our 
approach, we do not even add any runtime-linked library on the system, much less the 
system-level or even kernel-level modifications many cluster designs make.  We took 
this approach so that parallel executables can run on any node regardless of such 
modifications. We add as little as possible to the system by adding only one additional 
piece of executable code, Pooch, to run and operate the cluster.  This approach keeps 
installation time to a minimum, which helps satisfy our design goals with regards to 
cluster set up.   

Taking Advantage of a Consistently Supported API. At UCLA Physics, we do not 
have the resources to build or rebuild something as complex as an operating system or 
the APIs it provides to applications.  Therefore, we took advantage of APIs that were 
already present and officially supported in the Macintosh operating system.  We are 
taking advantage of Apple’s commercial, non-scientific motivation to provide a 
consistent, reliable, well-behaving API, operating system, and hardware.   

No Static Data. No assumptions have been made about particular hardware at 
particular addresses being available.  We rely on dynamically determined network 
information, automatically eliminating a host of potential sources of failure that the 
user might encounter.  A static node list could list nodes that are in fact non-
functional, and a problem is discovered only when a job fails, which could at the 
outset be due to a variety of potential problems in any node in the list.  By making 
dynamic discovery part of the node selection process, problem nodes are already 
eliminated before the user makes a decision.   

Minimum Assumptions about Configuration.  The absence of further configuration 
details about the cluster expresses how reliably it tolerates variations in configuration 
while interfacing and operating with hardware and software. The configuration 
requirements are that the node has a working network connection with a unique IP 
address and a unique network name, requirements already in place for web browsing 
and file sharing. This design has great implications for the mainstream because end 
users do not wish to be concerned with configuration details.  

Minimum Centralization.  A common philosophy used to increase the performance of 
parallel codes is to eliminate bottlenecks.  Extending that concept to clustering, we 
eliminated the “head node” of the typical Linux-based cluster.  Linux clusters require 
shared storage (NFS, AFS, etc.) to operate, yet it is a well-known single point of failure. 

We chose a decentralized approach.  All nodes can act as “temporary head nodes”, 
a transient state occurring only during the brief seconds of the launch process.  If a 
user finds that a node is down, that user can simply move on to another node and 
flexibly choose how to combine nodes for cluster computation from job to job.   

4   Conclusion 

The inexpensive and powerful cluster of Power Mac G3s, G4s, and G5s has become a 
valuable addition to the UCLA Plasma Physics group. The solution at UCLA Physics 
is fairly unique in that half of the nodes are not dedicated for parallel computing. We 
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purchase high-end Macs and devote them for computation while reassigning the 
older, slower Macs for individual (desktop) use and data storage. Thus, we are reusing 
the Macs in the cluster, making for a very cost-effective solution to satisfy both our 
parallel computing and desktop computing needs. The Mac cluster is unique in this 
regard, made possible by how tolerant the software is of variations in configuration.  

Our goal is to maximize the benefits of parallel computing for the end user.  By 
assuming only the minimum configuration of the hardware and operating system, the 
Mac cluster design has the potential to provide an significant advantage to cluster 
users.  The simplicity of using Mac cluster technology makes it a highly effective 
solution for all but the largest calculations. We are continuing to improve upon our 
work for the sake of those users and respond to their feedback. 

Our approach is unique because, while other solutions seem to direct little, if any, 
attention to usability, tolerance to variations in configuration, and reliability outside 
tightly-controlled conditions, we find such issues to be as important as raw 
performance.  We believe the ultimate vision of parallel computing is (rather than 
merely raw processor power) when the technology is so reliable and trivial to install, 
configure, and use that the user will barely be aware that computations are occurring 
in parallel.  This article presents our progress in building the “plug-and-play” 
technology to make that vision come true.   
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